## Instructions

This is an open book, open notes take home exam that is due Wednesday, September 28, 2016. This exam consists of six questions. You must complete questions 1 through 4, but you may choose any two questions from the “additional exam questions” section below. Please note that you may only choose two questions. If you turn in work for more than two, I will only grade the first two problems I come across and ignore the others.

Proofs need to be written clearly and concisely to receive full credit (although accompanying pictures are encouraged, especially if they help clarify an idea or description).

While taking this exam you are allowed to use any of your notes from this course (including any of my blog posts on this website that are related to Analysis — and, yes, this includes homework solutions), and you are allowed to use Chapters 0 and 1 from our textbook. Finally, you are also allowed to consult with me; I will try to be as helpful as I can when answering your questions.

As a last and unnecessary note: academic dishonesty of any kind will not be tolerated. Such behavior will result in an automatic F for this class. If you are not sure whether or not a resource you would like to use is in violation of our rules, then just ask — I’ll be more than happy to clarify.

## Mandatory Exam Questions (60 points)

**Question 1**. (a) (15 points) Let be a set of real numbers that is bounded from *below *and let . Prove that or that is an accumulation point for .

(b) (5 points) Provide an example of a set that is bounded below, where is an element of , but where is *not* an accumulation point for (or explain why no such example exists).

**Question 2**. (10 points) Prove that the sequence of real numbers where

converges.

**Question 3**. (20 points) For this problem we will need a new definition.

**Def.** (Bounded subset of a metric space) Suppose is a metric space. Then a subset is said to be **bounded** if there exists a non-negative real number and if there exists a point so that

.

(In more colloquial terms: a subset is said to be bounded if it can be contained in a finite-radius ball. Recall from our homework that a(n open) ball in a metric space is defined as .)

Parts (a)-(c) of this question concern the metric space where and is given by

and

(a) (4 points) Prove or disprove: the entire set is bounded.

(b) (8 points) Suppose is a convergent sequence of points in this metric space. What can you say about it? Phrase your answer as a theorem (one that is of the form “If is a convergent sequence of points in this metric space, then…”) and provide a proof.

(c ) (8 points) Is the Bolzano-Weierstrass Theorem true in this metric space? Prove your answer.

**Question 4**. (10 points) Describe an idea you had for a problem (or set of problems) from this class that did not work, and discuss what you learned from this experience.

## Additional Exam Questions (40 points or more)

**Question 5**. (25 points) Consider a sequence of real numbers that is bounded. The Completeness Axiom for tells us that the supremum of this sequence exists; say

Define another sequence of real numbers where

and, more generally,

.

If this sequence of suprema converges, we call its limit i**the eventual supremum** of the original sequence , and we write

(a) (10 points) Prove that the sequence of suprema, , always converges, i.e. that the eventual supremum always exists, whenever is bounded. (Note: this happens whether or not the original sequence converges.)

(b) (15 points) Prove that a sequence of real numbers converges to if and only if

where the **eventual infimum**, , is defined in a way similar to that of .

**Question 6**. (a) (10 points) Let be a sequence of real numbers with an accumulation point . Prove or disprove: has a subsequence that converges to .

(b) (10 points) Let be a bounded sequence of real numbers. Prove or disprove: has a convergent subsequence.

**Question 7**. (20 points) In class we discussed The Nested Interval Property of . Prove this slightly different version:

**Theorem**. Suppose

is a nested sequence of closed, non-empty, bounded intervals of real numbers. Let denote the length of the interval , and suppose that the sequence of these lengths converges to zero, i.e. that

Prove that the intersection contains exactly one real number.

**Question 8**. (20 points) Consider the sequence of real numbers where

.

Prove that the sequence converges to where

.

Also prove that, however, the original sequence is not Cauchy.

**Question 9**. (20 points) Suppose is a sequence of positive real numbers and that the sequence converges to where

.

Prove that converges to .

**Question 10**. (22 points) A sequence of real numbers is said to be **a contractive sequence** if there exists a real number where, for every , it follows that

(a) (5 points) Prove that if is a contractive sequence with constant , then for every it follows that

(b) (2 points) Define the notion of a **contractive sequence** for a sequence of points in an arbitrary metric space .

(c) (15 points) Prove or disprove: every contractive sequence of real numbers converges.